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Overview 



What’s wrong with Newtonian Gravity? 
Recall the basic assumptions of Special Relativity: 
1. Physics is the same in any inertial frame of reference 
2. Speed of light is the same for all observers 

How about Newtonian Gravity? 

1. The effects of gravity 
propagates instantaneously 

2. 𝛻2𝜙 = 4 𝜋 𝐺 𝜌 only contains 𝜌 term, it 
has different values in different frames!  

Violates the speed limit of 
special relativity. 

𝜌 can’t be a scalar quantity but actually 
part of the stress energy tensor as we 
have seen. 

We need a proper tensor theory of Gravity that reduces to produce 
Newtonian Gravity in limiting cases. 

By extension of 𝛻2𝜙 = 4 𝜋 𝐺 𝜌, we would expect the tensor form to 
look like 𝐺αβ = 𝐾 𝐺 𝑇αβ. Where  𝑇αβ contains  𝜌 as one of its terms. 



So, our goal today is … 

1. To find 𝐺αβ that will produce the Einstein 

equation 𝐺αβ = 𝐾 𝐺 𝑇αβ and find the 
proportionality constant K 

2. Apply it to find the metric of a Schwarzschild 
Black Hole 



Let’s cut the cable 
Previously, we have discussed properties of spacetime using the Minkowski metric. 
There, we never took gravity into account.  

But as far as we knew, for any observer in an inertial frame, he feels spacetime 
behaving as the Minkowski metric tells it to. 

Consider a freely falling elevator, 
people, as well as anything in it will feel 
as if there were no gravity. Basically a 
similar concept as the “imaginary force” 
used in classical mechanics to describe 
accelerating frames. 

Einstein took an extension of this idea 
to say that the freely falling frame is 
the actual inertial one! Therefore 
people in it see spacetime behaving as 
the Minkowski metric says! 



What does all this mean for spacetime? 

Now, assuming freely falling frames are inertial, this means that different observers 
placed in a non-uniform gravity field must be in different accelerating frames relative 
to each other. 

When there is gravity around, it becomes impossible to create a inertial frame in 
which no one is accelerating! Thus, the metric now is a function of position! 
Different observers at different locations are in different accelerating frames thus 
measures things differently! 

Sorry, I don’t have a very simple way of 
connecting these two concepts directly. 

We call this type of spacetime as being curved! 
Spacetime is being bent by the existence of mass-
energy! 

An observer freely falling sees others accelerating with respect to him! 



What does it mean to be curved? 

The basic idea: Two initially parallel lines don’t remain parallel after extending in 
the original direction. 
 
Simple method: Since initially parallel lines remain parallel in Euclidian space, if we 
can find a global transform between the metric of interest and the Euclidian one, 
then it must be flat. 

For the surface of a cylinder,  
 

dh2 = 𝑅2 dϕ2 + dz2 = 𝑑[Rϕ 2 + dz2 
 
Then, redefining 𝑑 Rϕ → dx; dz → dy, we retain 
dh2 = dx2 + dy2 
 
Therefore, the surface of a cylinder is flat! 

To determine if there is a global transform between the two, review the section in 6.2.4  



What does it mean to be curved? 

For the surface of a sphere,  
 

dh2 = 𝑟2 dθ2 + 𝑟2 sin2 𝜃 dϕ2 
 
We find it is impossible to find a global transform to retain dh2 = dx2 + dy2 
 
Therefore, the surface of a sphere is curved! 

Another way is to consider the figure on 
the left: 
 
At the equator, there are two parallel lines 
(since both are at right angles to the 
equator). 
 
However, extending them and one finds 
that they meet at the pole! They are no 
longer parallel! 



A connection to Gravity 
Before we continue, one interesting thing to note here is that although the Earth as a 
whole is a curved a surface. But we never draw town maps as if they were on a curved 
surface. 

What this means is that 
locally, a small patch of 
the sphere looks more or 
less flat! 

Recall that a few slides 
ago, we said that 
spacetime is curved by 
matter, but as we have 
also shown, locally, we 
can still find some frame 
that looks follows the 
Minkowski metric. Thus, 
gravity also has the 
similar property of being 
locally flat but globally 
curved! 



How do we test curvature more precisely? 

Although illustrative, but for higher dimensions it wouldn’t be trivial to “see” 
if two initially parallel lines remain parallel or even try to do global 
transformations on them. Therefore, to treat higher dimension spaces, we use 
the method introduced by Georg Friedrich Bernhard Riemann in the mid 
1800s – to compute the Riemann tensor. 

Recall that in Calculus, we learned that for a 1D function f(x),  
 

The first derivative 
df 𝑥

dx
 gives us the slope of the function at some point, 

whereas the second derivative 
df 𝑥 2

dx2  gives us the curvature (concave/convex). 

 
 



A hell lot of terms! 
To compute the Riemann tensor also requires taking second derivatives. We need to 
consider every possible second derivative on each term of the metric. 

For N dimensional space, there are𝑁 × 𝑁 possible second derivatives and also 𝑁 × 𝑁 
terms in the metric. 

This amounts to 𝑁4 terms for N dimensional spaces. (256 for 4D!) 

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
For example, in 4D spacetime, the Minkowski metric 
has 4 × 4 = 16 terms. 

And all possible second derivatives are as follows (also 16): 
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𝜕𝑧 𝜕𝑥
,

𝜕2

𝜕𝑦 𝜕𝑧
,

𝜕2

𝜕𝑧 𝜕𝑦
 

However, as we can already see, there must be some symmetries in the Riemann 
tensor that will allow us to get rid of lots of terms. 



The Riemann Tensor 

𝑅αβγδ =
𝜕𝛤αβδ

𝜕𝑥𝛾 −
𝜕𝛤αβγ

𝜕𝑥𝛿
+ 𝑔μν 𝛤μαδ 𝛤νβγ − 𝛤μαγ 𝛤νβδ  

𝛤αβγ =
1

2
 

𝜕𝑔αβ

𝜕𝑥𝛾 +
𝜕𝑔αγ

𝜕𝑥𝛽
−

𝜕𝑔βγ

𝜕𝑥𝛼  

Without going into detail, the Riemann tensor is defined as: 

We can see that it is composed of the difference of two terms 

Where the 𝛤αβγ terms are related to the metric as: 

They are called the Christoffel symbols. 

Now, we can see that the Riemann tensor is related to the metric through the 
second derivative. 

BAD SLIDE 



Meaning of the Christoffel symbols 

BAD SLIDE 



Hooray! Let’s do away with the terms! 
Algebraic Symmetries of the Riemann Tensor 

𝑅αβγδ =
𝜕𝛤αβδ

𝜕𝑥𝛾 −
𝜕𝛤αβγ

𝜕𝑥𝛿
+ 𝑔μν 𝛤μαδ 𝛤νβγ − 𝛤μαγ 𝛤νβδ  

From the definition of the Riemann Tensor and Christoffel symbols, 

We can find that 

𝑅αβδγ = −𝑅αβγδ 

𝛤αβγ =
1

2
 

𝜕𝑔αβ

𝜕𝑥𝛾 +
𝜕𝑔αγ

𝜕𝑥𝛽
−

𝜕𝑔βγ

𝜕𝑥𝛼  

𝑅γδαβ = 𝑅αβγδ 𝑅αβδγ = −𝑅βαδγ 𝑅ααγδ = 𝑅αβγγ = 0 

𝑅αβγδ + 𝑅αδβγ + 𝑅αγδβ = 0 

# =
1

8
 𝑁4 − 2 𝑁3 + 3 𝑁2 − 2 𝑁 𝑁 < 4

# =
1

8
 𝑁4 − 2 𝑁3 + 3 𝑁2 − 2 𝑁 −

𝑁!

4! 𝑁 − 4 !
𝑁 ≥ 4

 

Putting this all together, we find that the number of independent terms is # as follows: 

This means that we only have 1,6,20 potentially non-zero independent 
terms for 2,3,4 dimensions respectively! 

And the first Bianchi identity: 



Differential symmetry of the Riemann Tensor 

The Riemann Tensor also possesses differential symmetries, sometimes called the 
second Bianchi identity or simply Bianchi identity. 

𝛻𝛾𝑅μναβ + 𝛻𝛽𝑅μνγα + 𝛻𝛼𝑅μνβγ = 0 

 This identity does not decrease the number of components of the tensor that we 
need to calculate, but it does have profound importance for Einstein’s theory of 
gravity and for fundamental laws of physics. 



Example Riemann Tensors 
Previously, we have argued that the surface of a cylinder is flat and the surface of a 
sphere isn’t. How do we show that using Riemann Tensors? 

Example1.  
 

For the surface of a cylinder, the metric is 
dh2 = 𝑟2 dϕ2 + dz2  
 
Since 𝑟 is constant, this means that all of the 
Christoffel symbols 𝛤αβγ must be zero. 

 
Which in turn means that the Riemann tensor 
𝑅αβγδ is also zero. 

 
Thus, the surface of a cylinder is flat. 
 

𝑅αβγδ =
𝜕𝛤αβδ

𝜕𝑥𝛾 −
𝜕𝛤αβγ

𝜕𝑥𝛿
+ 𝑔μν 𝛤μαδ 𝛤νβγ − 𝛤μαγ 𝛤νβδ  𝛤αβγ =

1

2
 

𝜕𝑔αβ

𝜕𝑥𝛾 +
𝜕𝑔αγ

𝜕𝑥𝛽
−

𝜕𝑔βγ

𝜕𝑥𝛼  



Example Riemann Tensors 
Previously, we have argued that the surface of a cylinder is flat and the surface of a 
sphere isn’t. How do we show that using Riemann Tensors? 

𝑅αβγδ =
𝜕𝛤αβδ

𝜕𝑥𝛾 −
𝜕𝛤αβγ

𝜕𝑥𝛿
+ 𝑔μν 𝛤μαδ 𝛤νβγ − 𝛤μαγ 𝛤νβδ  𝛤αβγ =

1

2
 

𝜕𝑔αβ

𝜕𝑥𝛾 +
𝜕𝑔αγ

𝜕𝑥𝛽
−

𝜕𝑔βγ

𝜕𝑥𝛼  

Example2.  
 

Before we go to the sphere, lets consider polar 
coordinates on a flat piece of paper which has the 

metric dh2 = 𝑟2 d𝜃 2 + d𝑟2  
 
Now r isn’t constant, however, for 2D problems, we 
only have 1 independent non-zero term. 
 
Using 𝛤212 = 𝛤221 = −𝛤122 = 𝑟 and 𝑔11 = 1; 𝑔22 =
1 𝑟2 , we find that 𝑅1212 = −1 + 1 = 0 
 
Thus, it is also flat, as expected. 
 



Example Riemann Tensors 
Previously, we have argued that the surface of a cylinder is flat and the surface of a 
sphere isn’t. How do we show that using Riemann Tensors? 

𝑅αβγδ =
𝜕𝛤αβδ

𝜕𝑥𝛾 −
𝜕𝛤αβγ

𝜕𝑥𝛿
+ 𝑔μν 𝛤μαδ 𝛤νβγ − 𝛤μαγ 𝛤νβδ  𝛤αβγ =

1

2
 

𝜕𝑔αβ

𝜕𝑥𝛾 +
𝜕𝑔αγ

𝜕𝑥𝛽
−

𝜕𝑔βγ

𝜕𝑥𝛼  

Example3.  
 

Finally, the surface of a sphere follows the metric 
dh2 = 𝑟2 dθ2 + 𝑟2 sin2 𝜃 dϕ2 
 
This gives 𝛤212 = 𝛤221 = −𝛤122 = 𝑟2 𝑠𝑖𝑛 𝜃𝑐𝑜𝑠𝜃 and 
𝑔11 = 1/𝑟2; 𝑔22 = 1 𝑟2 sin2 𝜃  
 
Then, 𝑅1212 = 𝑟2 sin2 𝜃. 



Now, back to gravity 

Before we went into all that messy stuff of dealing with curvature, we had, based on 
simple analogies with Newtonian gravity argued that we had to find some equation 

that looked like like 𝐺αβ = 𝐾 𝐺 𝑇αβ. 

As we have argued, gravity is nothing more than the manifestation of curved 
spacetime. Now that we have discussed all about how to describe curvature in 
general, we are finally in place to put things together. 

However, the Riemann Tensor 𝑅αβγδ is a 4th rank tensor where as 𝐺αβ is only of 2nd 

rank. Therefore we must somehow manipulate the Riemann Tensor into a 2nd rank 
one.  

Also, since 𝛻 · 𝑇
 

= 0, we also require that 𝛻 · 𝐺
 

= 0. 



Our to do list 

1. Find 𝐺αβ from the Riemann Tensor 𝑅αβγδ.  

 

2. 𝐺αβ must satisfy 𝛻 · 𝐺
 

= 0. 
 

3. Find the proportionality constant K in 𝐺αβ = 𝐾 𝐺 𝑇αβ. 
 

4. 𝐺αβ = 𝐾 𝐺 𝑇αβ must reduce to 𝛻2𝜙 = 4 𝜋 𝐺 𝜌 in limiting cases. 



Finding a 2nd rank tensor from the Riemann Tensor 

There are many ways to extract a 2nd rank tensor from a 4th rank one, but only a 
few will inherit the properties of the Bianchi identities. (why does it have to?) 

One method would be to contract the metric with the Riemann Tensor 
𝑅αβ ≡ 𝑔μν 𝑅μανβ 

𝑅αβ is called the Ricci curvature tensor. 

Then, 𝑅αβ inherits a differential symmetry property from the Riemann tensor’s 

Bianchi identity: 

𝛻𝛼 𝑔αλ 𝑅λβ −
1

2
 𝛻𝛽𝑅 = 0 

Where 

𝑅 ≡ 𝑔βλ 𝑅λβ 

R is usually called the Ricci scalar. 

1. Find 𝐺αβ from the Riemann Tensor 𝑅αβγδ.  

2. 𝐺αβ must satisfy 𝛻 · 𝐺
 

= 0. 

3. Find the proportionality constant K in 𝐺αβ = 𝐾 𝐺 𝑇αβ. 

4. 𝐺αβ = 𝐾 𝐺 𝑇αβ must reduce to 𝛻2𝜙 = 4 𝜋 𝐺 𝜌 in limiting cases. 



Making a 2nd rank tensor that is divergence-free  
1. Find 𝐺αβ from the Riemann Tensor 𝑅αβγδ.  

2. 𝐺αβ must satisfy 𝛻 · 𝐺
 

= 0. 

3. Find the proportionality constant K in 𝐺αβ = 𝐾 𝐺 𝑇αβ. 

4. 𝐺αβ = 𝐾 𝐺 𝑇αβ must reduce to 𝛻2𝜙 = 4 𝜋 𝐺 𝜌 in limiting cases. 

However, from 𝛻𝛼 𝑔αλ 𝑅λβ −
1

2
 𝛻𝛽𝑅 = 0, we can see that the Ricci tensor 𝑅αβ isn’t 

divergence free. 

But we can use this property to construct a divergence free tensor: 

𝐺αβ ≡ 𝑅αβ −
1

2
 𝑔αβ 𝑅 

It is actually the onle 2nd rank tensor that can be derived from the Riemann tensor 
and has all the necessary properties that we required! 



Recap—from the metric to the Einstein Tensor 
1. Find 𝐺αβ from the Riemann Tensor 𝑅αβγδ.  

2. 𝐺αβ must satisfy 𝛻 · 𝐺
 

= 0. 

3. Find the proportionality constant K in 𝐺αβ = 𝐾 𝐺 𝑇αβ. 

4. 𝐺αβ = 𝐾 𝐺 𝑇αβ must reduce to 𝛻2𝜙 = 4 𝜋 𝐺 𝜌 in limiting cases. 

Now that we have  
 
1. Worked out how the Riemann Tensor 𝑅αβγδ related to the metric. 

 

𝑅αβγδ =
𝜕𝛤αβδ

𝜕𝑥𝛾 −
𝜕𝛤αβγ

𝜕𝑥𝛿 + 𝑔μν 𝛤μαδ 𝛤νβγ − 𝛤μαγ 𝛤νβδ  ; 𝛤αβγ =
1

2
 

𝜕𝑔αβ

𝜕𝑥𝛾 +
𝜕𝑔αγ

𝜕𝑥𝛽 −
𝜕𝑔βγ

𝜕𝑥𝛼  

 
2. Found the relation between the Riemann Tensor 𝑅αβγδ and the Einstein Tensor 𝐺αβ . 

 

𝐺αβ ≡ 𝑅αβ −
1

2
 𝑔αβ 𝑅 = 𝑔μν 𝑅

μανβ −
1

2
 𝑔αβ𝑔γδ 𝑔μν 𝑅μδνγ 

 
We are in good position to finally tackle the proportionality constant K. 
 
How we go about doing this is through the idea that Newtonian Gravity is actually a weak 
field limit of General Relativity. 



The final link – the proportionality constant 
1. Find 𝐺αβ from the Riemann Tensor 𝑅αβγδ.  

2. 𝐺αβ must satisfy 𝛻 · 𝐺
 

= 0. 

3. Find the proportionality constant K in 𝐺αβ = 𝐾 𝐺 𝑇αβ. 

4. 𝐺αβ = 𝐾 𝐺 𝑇αβ must reduce to 𝛻2𝜙 = 4 𝜋 𝐺 𝜌 in limiting cases. 

For the limit of weak gravity, we can guess that the metric should look almost 

Minkowskian, something like this: 

−1 + ℎtt 0 0 0
0 1 + ℎxx 0 0
0 0 1 + ℎyy 0

0 0 0 1 + ℎzz

 

To relate them with Newtonian Gravity, all we need is 𝑔ii 𝛤itt ≈ −
1

2
 
𝜕ℎtt

𝜕𝑥𝑖  

The next bit I don’t fully understand so I just cut the text out for completeness. 



BAD SLIDE 



Meaning of gauge 

The fact that 𝛻 · 𝐺
 

 tells us that the number of useful equations 
in 𝐺αβ = 8 𝜋 𝐺 𝑇αβ reduces to only 6.  

 
The theory thus allows for gauge freedom for us to construct 4 

independent conditions on the metric that we lost as conservation 
laws. 

 
What is the interpretation of gauge in GR? 

 
The answer is that the gauge is simply the coordinate system itself! 

 
The gauge is the coordinate system, and the gauge transformation 

is the generalized Lorentz transform! 
 



E&M in 4D curved space 



Curvature without local matter 

Since 𝐺αβ ≡ 𝑅αβ −
1

2
 𝑔αβ 𝑅 = 𝑔μν 𝑅

μανβ −
1

2
 𝑔αβ𝑔γδ 𝑔μν 𝑅μδνγ, 

Even if 𝐺αβ = 𝑇αβ = 0, this doesn’t mean that the Riemann curvature tensor 

𝑅αβγδ must also be zero, i.e. not necessarily flat. 
 

Non-zero components of 𝑅αβγδ can sum to be zero when calculating 𝐺αβ. 

This actually happens quite often, as 
long as we are in a region without 
sources of curvature (i.e. the stress-
energy tensor is zero there), then 𝐺αβ 
must be zero there. 
 
However, we might as well be right 
next to a black hole where the 
curvature is severe! This is the 
situation we will be dealing with as an 
Example.  



How to calculate a metric? 
Now, let say we want to find the metric to some distribution of mass-energy as 

described by 𝑇αβ. 
 
We know that… 
 

𝑅αβγδ =
𝜕𝛤αβδ

𝜕𝑥𝛾 −
𝜕𝛤αβγ

𝜕𝑥𝛿 + 𝑔μν 𝛤μαδ 𝛤νβγ − 𝛤μαγ 𝛤νβδ  ; 𝛤αβγ =
1

2
 

𝜕𝑔αβ

𝜕𝑥𝛾 +
𝜕𝑔αγ

𝜕𝑥𝛽 −
𝜕𝑔βγ

𝜕𝑥𝛼  

 

𝐺αβ ≡ 𝑅αβ −
1

2
 𝑔αβ 𝑅 = 𝑔μν 𝑅

μανβ −
1

2
 𝑔αβ𝑔γδ 𝑔μν 𝑅μδνγ 

 
𝐺αβ = 8 𝜋 𝐺 𝑇αβ 

So… 
 
All we have to do is to use some assumptions to “guess” the form of the metric. 
 
Then send the metric through the pipeline and solve the 10 equations so that 

𝐺αβ = 8 𝜋 𝐺 𝑇αβ is fully satisfied. 
 
This might seem a daunting task, but lets look at the example of a lonely black hole 
and we’ll see that it isn’t so terrible after all. 



A lonely and non-spinning BH – 
Assumptions to the Schwarzschild metric 

0. The metric is a symmetric tensor 

𝑔αβ =

𝑔00 𝑔01 𝑔02 𝑔03

𝑔01 𝑔11 𝑔12 𝑔13

𝑔02 𝑔12 𝑔22 𝑔23

𝑔03 𝑔13 𝑔23 𝑔33

 

1. Spherically symmetric 
  a. choose to use spherical coordinates (t, r, 𝜃, 𝜙) 
  b. unchanged under 𝜃,𝜙 reversals (𝜃 → −𝜃,𝜙 → −𝜙) 

𝑔αβ =

𝑔00 𝑔01 0 0
𝑔01 𝑔11 0 0
0 0 𝑔22 0
0 0 0 𝑔33

 

2. Static 

  a. 
𝜕𝑔μν

𝜕𝑡
= 0 

  b. unchanged under 𝑡 reversals  (𝑡 → −𝑡)  

𝑔αβ =

𝑔00 0 0 0
0 𝑔11 0 0
0 0 𝑔22 0
0 0 0 𝑔33

 

3. Solution is in vacuum  𝐺αβ = 8 𝜋 𝐺 𝑇αβ = 0 

𝑔αβ =

𝑔00 𝑔01 𝑔02 𝑔03

𝑔10 𝑔11 𝑔12 𝑔13

𝑔20 𝑔21 𝑔22 𝑔23

𝑔30 𝑔31 𝑔32 𝑔33

 

-1. Any general metric 



The Christoffel Symbols 

𝑔αβ =

𝐵 𝑟 0 0 0
0 𝐴 𝑟 0 0

0 0 𝑟2 0
0 0 0 𝑟2sin2𝜃

 

𝛤tαβ =

0
𝐵′

2
0 0

𝐵′

2
0 0 0

0 0 0 0
0 0 0 0

 

𝑔αβ =

𝑔00 0 0 0
0 𝑔11 0 0
0 0 𝑔22 0
0 0 0 𝑔33

 

𝛤ϕαβ =

0 0 0 0
0 0 0 rsin2 𝜃
0 0 0 𝑟2 sinθcosθ
0 rsin2 𝜃 𝑟2 sinθcosθ 0

 𝛤rαβ =

−𝐵′

2
0 0 0

0
𝐴′

2
0 0

0 0 −𝑟 0
0 0 0 −rsin2 𝜃

 

𝛤θαβ =

0 0 0 0
0 0 𝑟 0
0 𝑟 0 0
0 0 0 −𝑟2 sinθcosθ

 

ds2 = 𝑔00 dt2 + 𝑔11 dr2 + 𝑔22 dθ2 + 𝑔33 dϕ2 



Derivation of the Schwarzschild metric 

𝐺αβ = 8 𝜋 𝐺 𝑇αβ = 0 

𝑅αβγδ =
𝜕𝛤αβδ

𝜕𝑥𝛾 −
𝜕𝛤αβγ

𝜕𝑥𝛿
+ 𝛤𝜈

αδ 𝛤νβγ − 𝛤𝜈
αγ𝛤νβδ 

𝐺αβ ≡ 𝑅αβ −
1

2
 𝑔αβ 𝑅 = 𝑔μν 𝑅

μανβ −
1

2
 𝑔αβ𝑔γδ 𝑔μν 𝑅μδνγ 

𝑔αβ =

𝐵 𝑟 0 0 0
0 𝐴 𝑟 0 0

0 0 𝑟2 0
0 0 0 𝑟2sin2𝜃

 



Derivation of the Schwarzschild metric 

−2 𝑟 𝐵
..

 𝐴 𝐵 + 𝑟 𝐴
.

 𝐵
.

 𝐵 + 𝑟 𝐵
.
2 𝐴 − 4 𝐵

.

 𝐴 𝐵 = 0 

𝑟 𝐴
.

 𝐵 + 2 𝐴2 𝐵 − 2 𝐴 𝐵 − 𝑟 𝐵
.

 𝐴 = 0 

4 𝐴
.

 𝐵2 − 2 𝑟 𝐵
..

 𝐴 𝐵 + 𝑟 𝐴
.

 𝐵
.

 𝐵 + 𝑟 𝐵
.
2 𝐴 = 0 

𝐴
.

 𝐵 + 𝐵
.

 𝐴 = 0 →
𝑑

dr
 AB = 0 → 𝐴 𝑟  𝐵 𝑟 ≡ 𝐾 

𝑟 𝐴
.

 
𝐾

𝐴
+ 2 𝐾 𝐴 − 2 𝐾 + 𝑟 𝐴

.

 
𝐾

𝐴
= 2 𝐾 𝑟 

𝐴
.

𝐴
+ 𝐴 − 1 = 0 → 𝑟 𝐴

.

= 𝐴 1 − 𝐴  

𝐴 𝑟 =
1

1 +
1
𝑆 𝑟

 𝐵 𝑟 = 𝐾 1 +
1

𝑆 𝑟
 

ds2 = 𝐾 1 +
1

𝑆 𝑟
 dt2 +

dr2

1 +
1
𝑆 𝑟

+ 𝑟2 dθ2 + 𝑟2 sin2 𝜃 dϕ2 

𝐺αβ = 8 𝜋 𝐺 𝑇αβ = 0 



The coefficients 

Next Week! 



The Schwarzschild metric 


