Black Hole Astrophysics
Chapters 6.5.2. & 6.6.2.2 & 7.1~7.3

All figures extracted from online sources of from the textbook.
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Overview

The special theory of relativity can describe an enormous amount of physics. It can
handle forces due to fluid or gas pressure, flow speeds up to the speed of light, elec-
tric and magnetic forces, and even viscous forces. One aspect that is completely
missing, however, is gravity. And the gravitational force cannot be added easily: it

cannot be written 1n a stress-energy tensor form for use in equation (6.121). This 1s
true even 1n Newtonian mechanics, where it 1s included as an add-on “body force”.
In order to include gravity in the theory of relativity, Einstein reasoned that erav-

ity must be a pseudo-force, arising not from another stress-energy component, but
from the gradient operator itself (V) in equation (6.121). In other words, because

gravity occurs when matter is present, somehow matter must cause four-dimensional
space to be curved, rather than flat. This curvature then gives rise to additional terms
in_the equations of motion that we interpret as the force of gravity. The addition
of curvature to the spacetime metric, plus the realization that energy is mass, and
therefore can partake in the generation of the gravitational field, led to a complete
and consistent theory of gravity that we now know as Einstein’s general theory of
relativity [308, 309]. Constructing a theory of gravity that was consistent with four-
dimensional spacetime, however, was a monumental task that took Einstein nearly
ten years to fully work out. And it has taken the century following that for the rest
of us to determine its implications.'




What's wrong with Newtonian Gravity?

Recall the basic assumptions of Special Relativity:
1. Physics is the same in any inertial frame of reference
2. Speed of light is the same for all observers

How about Newtonian Gravity?

1. The effects of gravity 2.V%¢ = 4G p only contains p term, it
propagates instantaneously has different values in different frames!

Violates the splee d limit of p can’t be a scalar quantity but actually

. 4 part of the stress energy tensor as we
special relativity. TR i

| |
|

We need a proper tensor theory of Gravity that reduces to produce
Newtonian Gravity in limiting cases.

|

By extension of V2¢ = 4mG p, we would expect the tensor form to
look like G*® = KGT*B. Where T*P contains p as one of its terms.




So, our goal today is ...

1. To find G*P that will produce the Einstein

equation G*® = KGT*P and find the
proportionality constant K

2. Apply it to find the metric of a Schwarzschild
Black Hole



Let’s cut the cable

Previously, we have discussed properties of spacetime using the Minkowski metric.
There, we never took gravity into account.

But as far as we knew, for any observer in an inertial frame, he feels spacetime
behaving as the Minkowski metric tells it to.

Consider a freely falling elevator;
people, as well as anything in it will feel
as if there were no gravity. Basically a
similar concept as the “imaginary force”
used in classical mechanics to describe
accelerating frames.

Einstein took an extension of this idea #
to say that the freely falling frame is
the actual inertial one! Therefore

people In 1t see Spacetlme behavmg as Things falling freely in a gravity field all accelerate by the same

a 3 : | amount, sothey move the same way as if they were in aregion
the Minkowski metric Says. of zero gravity — ~“welghtlessness”!




What does all this mean for spacetime?

Now, assuming freely falling frames are inertial, this means that different observers

placed in a non-uniform gravity field must be in different accelerating frames relative
to each other.

An observer freely falling sees others accelerating with respect to him!

When there is gravity around, it becomes impossible to create a inertial frame in
which no one is accelerating! Thus, the metric now is a function of position!

Different observers at different locations are in different accelerating frames thus
measures things differently!

Sorry, I don’t have a very simple way of
connecting these two concepts directly.

\4

We call this type of spacetime as being curved!
Spacetime is being bent by the existence of mass-
energy!




What does it mean to be curved?

The basic idea: Two initially parallel lines don’t remain parallel after extending in
the original direction.

Simple method: Since initially parallel lines remain parallel in Euclidian space, if we
can find a global transform between the metric of interest and the Euclidian one,
then it must be flat.

To determine if there is a global transform between the two, review the section in 6.2.4

For the surface of a cylinder;

dh? = R2dd? + dz? = (d[Rd])? + dz?

Then, redefining d[R$] — dx; dz — dy, we retain
dh? = dx? + dy?

Therefore, the surface of a cylinder is flat!




What does it mean to be curved?

For the surface of a sphere,
dh? = r2d8? + r?sin?0d¢?
We find it is impossible to find a global transform to retain dh? = dx? + dy?*

Therefore, the surface of a sphere is curved!

Another way is to consider the figure on
the left:

At the equator, there are two parallel lines
(since both are at right angles to the
equator).

However, extending them and one finds
that they meet at the pole! They are no
longer parallel!




A connection to Gravity

Before we continue, one interesting thing to note here is that although the Earth as a
whole is a curved a surface. But we never draw town maps as if they were on a curved
surface.

What this means is that
locally, a small patch of
the sphere looks more or
less flat!

Recall that a few slides
ago, we said that
spacetime is curved by
matter, but as we have
also shown, locally, we
can still find some frame
that looks follows the
Minkowski metric. Thus,
gravity also has the
similar property of being
locally flat but globally
curved!




How do we test curvature more precisely?

Although illustrative, but for higher dimensions it wouldn’t be trivial to “see”
if two initially parallel lines remain parallel or even try to do global
transformations on them. Therefore, to treat higher dimension spaces, we use
the method introduced by Georg Friedrich Bernhard Riemann in the mid
1800s - to compute the Riemann tensor.

Recall that in Calculus, we learned that for a 1D function f(x),

; S Ll e Y . ;
The first derivative i) gives us the slope of the function at some point,

dx
df(x)?
dx?

whereas the second derivative gives us the curvature (concave/convex).

=
u
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A hell lot of terms!

To compute the Riemann tensor also requires taking second derivatives. We need to
consider every possible second derivative on each term of the metric.

For N dimensional space, there areN X N possible second derivatives and also N X N
terms in the metric.

This amounts to N* terms for N dimensional spaces. (256 for 4D!)

-1 0 0 O

For example, in 4D spacetime, the Minkowski metric 0O 1 0 0
has 4 X 4 = 16 terms. 0 0 1 0
0O 0 0 1

And all possible second derivatives are as follows (also 16):

92 92 9% 9% 92 9% 92 9% 9% 9% 9% 92 9% 9% 9% 92
0t2’9x2’ 9y2’' 922’ dtdx’ dxot’ 0tdy’ dyot’ 0tdz’ 0zot’ 0xdy’ dydx’ dxdz 0z0x dydz’ 0zdy

However, as we can already see, there must be some symmetries in the Riemann
tensor that will allow us to get rid of lots of terms.



The Riemann Tensor

Without going into detail, the Riemann tensor is defined as:

Ropys = Ay S sy +9uv(FuaSQBv_FuavR88)

We can see that it is composed of the difference of two terms

Where the [,g, terms are related to the metric as:

3 (e 2828 BAD SLIDE

lagy = 2\ oxr " axP  ox“

They are called the Christoffel symbols.

Now, we can see that the Riemann tensor is related to the metric through the
second derivative.



Meaning of the Christoffel symbols

This shows explicitly that the derivative of V is more than just the derivative of
its components V“. Now, since r is just one coordinate, we can generalize the above
equation to

v ave 920
axP — oxP eV

(5
axP’
where, now, xP can be either r or 0 for p=1or2. BAD S LI D E

A general vector V has components (V", V) on the polar basis. Its derivative, by analog
with Eq. (5.40), 1s

oV .
— = —(V er+ V7 ép)
ar ar
VT e BVE 0 /
= e, +V — + g+ V' — B
ar ar ar r’ Val
- vz
and similarly for 0V /d6. Written in index notation, this becomes ////
- ~
v 9 Ve i )
= _( uf)— etx"'v - - / Av
ar ar ar ar
(Here « runs of course over r and 6.) :

Change in &;, when @ changes by Ad.

S — F,\Laﬁ el’(‘ - — ED:' + Vﬂlrl{ialﬁ E}l' W;JB = Va’ﬁ + V'{Lranu’ﬁ'



Hooray! Let's do away with the terms!
Algebraic Symmetries of the Riemann Tensor

From the definition of the Riemann Tensor and Christoffel symbols,

81}135 A aFaBy 1 <aga8 n agay ™ agBY)

RaByS = OxY 9x0 + gw(ruocSFVBy e FuocyFVBS) FO‘BY = E axY oxB dx%

We can find that

Rogsy = —Rapys  Rysap = Rapys  Rapsy = —Rpasy Ryays = Ragyy = 0

And the first Bianchi identity: Rygys + Raspy + Raysp = 0

Putting this all together, we find that the number of independent terms is # as follows:

1
#=§(N4—2N3+3N2—2N) N < 4

N!

1 !
#=—(N*=2N3+3N2 —2N) — N > 4
5 ( 18 )=mw=ay N2

This means that we only have 1,6,20 potentially non-zero independent
terms for 2,3,4 dimensions respectively!



Differential symmetry of the Riemann Tensor

The Riemann Tensor also possesses differential symmetries, sometimes called the
second Bianchi identity or simply Bianchi identity.

VRuvapg + VgRuvya + VaRyvpy = 0
This identity does not decrease the number of components of the tensor that we

need to calculate, but it does have profound importance for Einstein’s theory of
gravity and for fundamental laws of physics.



Example Riemann Tensors

Previously, we have argued that the surface of a cylinder is flat and the surface of a
sphere isn’t. How do we show that using Riemann Tensors?

aFaBS aroc[%y _]_ agaB agay agBY
Rapys = 7 — a6 T 9" (Lislipy — Tuaylups)  Tusy = 5\ 5 ¥ 558 ~ e

Examplel. Z

For the surface of a cylinder, the metric is
dh? = r?d¢$p? + dz?

0
Since r is constant, this means that all of the K%J z)
— p—
~
i

Christoffel symbols FaBy must be zero. r

Which in turn means that the Riemann tensor T~

Rygys is also zero. ¥ N\ y
A & e IH )

Thus, the surface of a cylinder is flat. —_———



Example Riemann Tensors

Previously, we have argued that the surface of a cylinder is flat and the surface of a
sphere isn’t. How do we show that using Riemann Tensors?

01”0(35 = ara[gy 1 (agaB i agay 4 agBY)

Ragys = oxY dx6 + gw(ruaSFVBY B Fuocvr\fBS) logy = 2

oxY  dxP  o0x“«

Example2.

Before we go to the sphere, lets consider polar 139
coordinates on a flat piece of paper which has the 150"
metric dh? = r2d6 * + dr? -

150%

Now r isn’t constant, however, for 2D problems, we
only have 1 independent non-zero term.

195°

210®

Using 12 = 521 = —[13; =rand g'' = 1, g%° = 225"

1/T2, we f|nd that R1212 = -1 A = O

Thus, it is also flat, as expected.



Example Riemann Tensors

Previously, we have argued that the surface of a cylinder is flat and the surface of a
sphere isn’t. How do we show that using Riemann Tensors?

R 2 aFaB5 = OFQBY 8 1 a.gocB i agay 4 agBy
aBYS T "5y T §x0 g ko impbesidad

+ gw(ruaSR)By ¥ Fuocy[\')BS) FO(BY o § E
Example3.

Finally, the surface of a sphere follows the metric
dh? = r2d6? + r?sin?0d¢p?

This gives 31, = I351 = —I1, = r?sinfcos and
gt =1/r? g% = 1/r?sin%6

Then, R;1, = r?sin?0.

Initially,
this looks strange: does the curvature change with position (f) on the sphere? No,
the issue is simply with how we express the Riemann tensor. If we write it as a
mixed tensor, then the only non-zero component mw"‘? = 1/r2 is constant over the
sphere.* So the surface of a sphere is not flat: the Riemann tensor has at least one
non-zero component.



Now, back to gravity

Before we went into all that messy stuff of dealing with curvature, we had, based on
simple analogies with Newtonian gravity argued that we had to find some equation
that looked like like G*P = KGT°P.

As we have argued, gravity is nothing more than the manifestation of curved
spacetime. Now that we have discussed all about how to describe curvature in
general, we are finally in place to put things together.

However, the Riemann Tensor R,g,s is a 4™ rank tensor where as G is only of 2nd

rank. Therefore we must somehow manipulate the Riemann Tensor into a 2" rank
one.

e
Also, since V- T = 0, we also requirethat V- G = 0.



Our to do list

1. Find G*B from the Riemann Tensor Rygys-

g
2. GP must satisfy V - G = 0.

3. Find the proportionality constant K in G*¥ = KGT*B.

4. G = KGT*B must reduce to V?¢ = 4G p in limiting cases.




Finding a 2" rank tensor from the Riemann Tensor

1. Find G“® from the Riemann Tensor Rygys-

2. G*B must satisfy V7 - G310
3. Find the proportionality constant K in G*® = KGT 5.
4. G*B = KGT B must reduce to V?¢ = 4mGp in limiting cases.

There are many ways to extract a 2" rank tensor from a 4 rank one, but only a
few will inherit the properties of the Bianchi identities. (why does it have to?)

One method would be to contract the metric with the Riemann Tensor
RO‘B = gl’wR
Ry is called the Ricci curvature tensor.

navp

Then, Ryg inherits a differential symmetry property from the Riemann tensor’s
Bianchi identity:

1
V(g™ Ryg) —s V3R =10
(9 Rag) =5 Vs
Where
R = gBARAB
R is usually called the Ricci scalar.



Making a 2" rank tensor that is divergence-free

L g
3. Find the proportionality constant K in G*® = KGT 5.
4. G*B = KGT B must reduce to V?¢ = 4mGp in limiting cases.

However, from Va(g“}‘R;\B) — % VgR = 0, we can see that the Ricci tensor Ry isn’t
divergence free.

But we can use this property to construct a divergence free tensor:

6B = Ras —% g9BR

It is actually the onle 2™ rank tensor that can be derived from the Riemann tensor
and has all the necessary properties that we required!



Recap—from the metric to the Einstein Tensor
2_GB must satisfy (_)G — 9

3. Find the proportionality constant K in G*® = KGT 5.
4. G*B = KGT B must reduce to V?¢ = 4mGp in limiting cases.

Now that we have

1. Worked out how the Riemann Tensor R,gys related to the metric.

aFocBS aFocBy 1 agocB 09a agB
= = ny 2 . e y _ 99py
RaByS ey %0 T 9 (FHOCSR’BY FHO‘YFVBS) i FO‘BY (32 ( oxY oxB ax“)

2. Found the relation between the Riemann Tensor R,gys and the Einstein Tensor AR

1 1
GocB = RocB 4 E90([3R 4 gwRMOCVB = EQQBQYSQWRLLSVY

We are in good position to finally tackle the proportionality constant K.

How we go about doing this is through the idea that Newtonian Gravity is actually a weak
field limit of General Relativity.



The final link - the proportionality constant

L g
3. Find the proportionality constant K in G*® = KGT 5.
4. G*B = KGT B must reduce to V?¢ = 4mGp in limiting cases.

For the limit of weak gravity, we can guess that the metric should look almost

—=1:14- htt 0 0 0
LR e Fhin e G 0 1+ hyx 0 0
inkowskian, something like this: 0 0 1+ hyy 0
0 0 0 1+ h,,
To relate them with Newtonian Gravity, all we need is gii itt = —% Z};tit

The next bit I don't fully understand so [ just cut the text out for completeness.




From equation (B.5) the conservation of momentum in, e.g., the x direction is

0= (V- -T)"

— 3 VT
3
o =l . 5 . .
T Z d’l’:d + Z g9 -T.l“jT -+ Z T Z g r)\;.tﬁ

w3 8B
If V < ¢, then the only large component of 7 7 is
T-‘w'w — pCQ
so we are left with only one pseudo-force term in the full equation

I(pVe)
Ow

The last term in this equation of motion must be the negative of Newton’s gravita-
tional force p V1), so we now can determine h,,,, and G*'"

1
0= + V- (pVV) + Vp — 5 V(h.,”,,,“)pcg

h}u;‘w - _21«’/62 gn;u; = 2 vz_w/(jz
Therefore, if Newton’s and Einstein’s laws of gravitation are, respectively,
V3 = 4w G p and 2V2p/c? = KGpc?

then, in order for the two theories to agree in the weak gravity limit, the constant of
proportionality in Einstein’s theory of gravity must be

~ 7
o BAD SLIDE
The final Einstein field equations, then, are
G
G = 87 A T (7.21)




g
The fact that V - G tells us that the number of useful equations
in G*® = 8nGT*P reduces to only 6.

The theory thus allows for gauge freedom for us to construct 4
independent conditions on the metric that we lost as conservation
laws.

What is the interpretation of gauge in GR?

The answer is that the gauge is simply the coordinate system itself!

The gauge is the coordinate system, and the gauge transformation
is the generalized Lorentz transform!




E&M in 4D curved space

R \The beauty and simplicity of using geometry to describe curved space is very ob-
W -~ “Uq4n  vious for electromagnetic theory. The same geometric equations that we derived in
= = l flat space (equations (6.112) and (6.113)) still describe the electromagnetic field

v. FT -y (7.23)

C

V- M'=0 (7.24)

and the equations of motion can also be expressed in the same way
1 ¢
V- Trpo=-J" - F
c
or, by defining the electromagnetic stress-energy tensor (equation (6.121)),

V- (TrL+TEm) =0

The only difference now is that the curvature of space and the presence of gravity are
hidden in the geometry of the gradient operator V, which is determined by how the
metric is expressed in a coordinate system. The equations of E & M are valid in any
frame — flat or curved, accelerating or not — and, therefore, are generally covariant.



Curvature without local matter

. = 1 1

Since G*P = R*B — EgO‘BR = gwR“"“’B — Eg“BgYSg”"RuSW,
Even ifG*P = T*B = (0, this doesn’t mean that the Riemann curvature tensor
RBY® must also be zero, i.e. not necessarily flat.

Non-zero components of R®PY9 can sum to be zero when calculating G*B.

This actually happens quite often, as
long as we are in a region without
sources of curvature (i.e. the stress-
energy tensor is zero there), then G*P
must be zero there.

However, we might as well be right
next to a black hole where the
curvature is severe! This is the
situation we will be dealing with as an
Example.




How to calculate a metric?

Now, let say we want to find the metric to some distribution of mass-energy as
described by T*F.

We know that...

Olqgs  Olqgy 1 (0dap , 99ay 09y
e - LV < 1 i L
Rogys = oY 98 19 (FuocSFVBY FuavFVBS) i lapy = 2 (axy %8 ax“)

1 1
GoB = poaB _ EgaBR pie guVRuocVB LY EQO‘BQYSQ”"R“&W

GP = 8 GT*P
So...

All we have to do is to use some assumptions to “guess” the form of the metric.

Then send the metric through the pipeline and solve the 10 equations so that
GP = 8rGT*B is fully satisfied.

This might seem a daunting task, but lets look at the example of a lonely black hole
and we'll see that it isn’t so terrible after all.



A lonely and non-spinning BH -
Assumptions to the Schwarzschild metric

-1. Any general metric 0. The metric is a symmetric tensor
Yoo Yo1 Yoz Yo3 Yoo Yo1 Yoz Yo3
_ [ Y10 Yg11 Y12 Y13 _ [ Y01 Y11 Y1z Y13
Yap g20 Y921 Y922 923 Jop Joz Y12 Y22 923
930 Y31 Y32 Y33 Yoz Y913 Y23 Y33
1. Spherically symmetric Yoo Jo1 8 8
a. choose to use spherical coordinates (t,r, 6, ¢) din= gor IJu
b 0 0 g, O

b. unchanged under 0,¢ reversals (8 - —0,¢p = —¢) 0 0 0 g
33

; Joo 0 0 0

2. Static hiss 7 G 0

£ ag::w il (i ot 0 g2 O
b. unchanged under t reversals (t » —t) 0 0 0 933

3. Solution is in vacuum G*P = 8n7GT*P = 0



The Christoffel Symbols

ds? = goodt® + gy1dr® + g,,d0% + g33dd?

oo O 0 0
VR O g fade 0 0 B(r) O 0 0
(A R R | R AR | 0 A(®) 0 0
7R T g g e g
0 0 0
i 0 0 0 r?sin6
Bl
/ Qe 0\ 0 0 0 0
B’ 0 0 r 0
lrap = > 0O 0 O loap = 0 r 0 0
0O 0 0 0 0 0 0 -r?sinBcosO
0O 0 0 O
__B’
om0 st D0 ) izt 0 0
: Al r =10 0 0 rsin“6
rag =1 0 0 0 s 0 0 0 r2sinBcosH
0 rsin?8 r?sinBcosO 0




Derivation of the Schwarzschild metric
Br) 0 0 0
S0 s ARy 5 10
dup 0 0 12 0
0 0 0 7r2%sin%6

aBYS T 5x¥  9x9

+ FvocSR)By B Fvocy[\')BS

1 1
GoB = RaB _ EgaBR . guvRuaVB = EgOCB(gY(SgMVRMSVY

G = 8nGT*F = 0



Derivation of the Schwarzschild metric
G = 8nGT*P =0

4AB? — 2rBAB + rABB + rB?4 = 0
—2rBAB + rABB + rB%A — 4BAB = 0
rAB + 2A?B — 2AB —rBA =0

. : d
AB + BA = 0—>a(AB) =0-A(r)B(r) =K

K K A .
rAZ+2KA—2K+rAZ=2K<rZ+A—1>=O—>rA=A(1—A)

1
s 1
A(r) = 1 B(r) =K (1 + 5_>
1 +S_T') r
5 1 dr? :
ds? =K |1+ = dt? + P s s r2d0? + r?sin“0d¢?
(1+3)



The coefficients

Next Week!



The Schwarzschild metric

[~ (1 251) 0 0 0
SCH _ 0 (1—26M)~" 0
s 0 0 20
\ 0 0 0 r2sin? 9)

Schwarzschile i Horizon

Radius “’,/ Black Hole

Singularity




